6 research outputs found

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    A cooperative sequential adsorption model for wireless gossiping

    No full text

    Stripping und Analytik von Methan aus natuerlichen Waessern

    No full text
    TIB Hannover: DR 6053 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Improving the performance of trickle-based data dissemination in low-power networks

    No full text
    Trickle is a polite gossip algorithm for managing communication traffic. It is of particular interest in low-power wireless networks for reducing the amount of control traffic, as in routing protocols (RPL), or reducing network congestion, as in multicast protocols (MPL). Trickle is used at the network or application level, and relies on up-to-date information on the activity of neighbors. This makes it vulnerable to interference from the media access control layer, which we explore in this paper. We present several scenarios how the MAC layer in low-power radios violates Trickle timing. As a case study, we analyze the impact of CSMA/CA with ContikiMAC on Trickle’s performance. Additionally, we propose a solution called Cleansing that resolves these issues
    corecore